Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Graphene Nanoplatelets

Authors: ---
ISBN: 9783039287949 / 9783039287956 Year: Pages: 140 DOI: 10.3390/books978-3-03928-795-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Graphene nanoplatelets (GNPs) have attracted considerable interest due to their exceptional mechanical, electrical, and thermal properties, among others. This book provides a deep review of some aspects related to the characterization of GNPs and their applications as nanoreinforcements for different types of matrices such as polymeric- or cement-based matrices. In this book, the reader will find how these nanoparticles could be used for several industrial applications such as energy production and storage or effective barrier coatings, providing a wide overview of future progress in this topic

Advances in Digital Image Correlation (DIC)

Authors: ---
ISBN: 9783039285143 / 9783039285150 Year: Pages: 252 DOI: 10.3390/books978-3-03928-515-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Digital image correlation (DIC) has become the most popular full field measurement technique in experimental mechanics. It is a versatile and inexpensive measurement method that provides a large amount of experimental data. Because DIC takes advantage of a huge variety of image modalities, the technique allows covering a wide range of space and time scales. Stereo extends the scope of DIC to non-planar cases, which are more representative of industrial use cases. With the development of tomography, digital volume correlation now provides access to volumetric data, enabling the study of the inner behavior of materials and structures.However, the use of DIC data to quantitatively validate models or accurately identify a set of constitutive parameters remains challenging. One of the reasons lies in the compromises between measurement resolution and spatial resolution. Second, the question of the boundary conditions is still open. Another reason is that the measured displacements are not directly comparable with usual simulations. Finally, the use of full field data leads to new computational challenges.

Keywords

super pressure balloon --- stress concentration --- strain --- non-contact measurement --- digital image correlation --- large deformation --- digital image correlation --- multi-perspective --- single camera --- cross dichroic prism --- earthquake rupture --- fault geometry --- spatiotemporal evolution --- strain gage --- spatial sampling rate --- rupture speed --- slip velocity --- high-speed camera --- experimental-numerical method --- digital image correlation --- finite element method --- static analysis --- arch structures --- fracture process zone --- digital image correlation technique --- acoustic emission technique --- stress intensity factor --- 3D deformation --- digital volume correlation --- optical coherence elastography --- virtual fields method --- layered material --- interior 3D deformation --- digital volumetric speckle photography --- X-ray microtomography --- digital volume correlation --- red sandstone --- woven composite beam --- digital image correlation --- dynamic interfacial rupture --- traction continuity across interfaces --- non-contact video gauge --- measurement --- stress-strain relationship --- uniaxial tensile test --- elevated temperature --- DIC --- initial condition --- image registration --- strain measurement --- copper plate --- underwater impulsive loading --- non-liner dynamic deformation --- 3D digital image correlation --- image correlation --- gradient correlation functions --- laser speckles --- image cross-correlation --- monitoring --- geosciences --- automated systems --- machine learning --- image classification --- image shadowing --- characterization of composite materials --- interlaminar tensile strength --- digital image correlation --- inverse method --- finite element model updating --- Digital image correlation (DIC) --- composite structures --- structural testing --- experimental mechanics --- composite materials --- automated composite manufacturing --- composite inspection --- automated fiber placement (AFP) --- DIC --- traceable calibration --- accuracy --- error --- n/a

Advances in Wood Composites

Author:
ISBN: 9783039285846 / 9783039285853 Year: Pages: 210 DOI: 10.3390/books978-3-03928-585-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Wood composites have shown very good performance, and substantial service lives when correctly specified for the exposure risks present. Selection of an appropriate product for the job should be accompanied by decisions about the appropriate protection, whether this is by design, by preservative treatment or by wood modification techniques. This Special Issue, Advances in Wood Composites presents recent progress in enhancing and refining the performance and properties of wood composites by chemical and thermal modification and the application of smart nanomaterials, which have made them a particular area of interest for researchers. In addition, it reviews some important aspects in the field of wood composites, with particular focus on their materials, applications, and engineering and scientific advances, including solutions inspired biomimetrically by the structure of wood and wood composites. This Special Issue, with a collection of 13 original contributions, provides selected examples of recent Advances in Wood Composites

Keywords

wood --- thermal modification --- mechanical properties --- dimensional stability --- color --- chemical structure --- VOCs --- alder plywood --- high-density polyethylene film --- bending strength --- modulus of elasticity in bending --- shear strength --- thickness swelling --- water absorption --- activation volume --- creep behavior --- sol-gel process --- stepped isostress method --- wood-inorganic composites --- wood adhesive --- tunnel-structured --- sepiolite --- rapid formaldehyde release --- wood plastic composite --- graphene nano-platelets --- thermal property --- mechanical property --- water-based UV curing coating --- coating amount --- surface properties --- polyurethane-acrylate --- oak (Quercus alba L.) --- bamboo --- carbothermal reduction --- ceramic --- silicon carbide --- sol–gel process --- thermal modification --- nanocompounds --- mechanical and physical properties --- cellulose --- crystallinity --- biorefinery lignin --- wood panels --- sustainable adhesives --- adhesive penetration --- particleboard properties --- formaldehyde emissions --- bamboo --- chemical modification --- dimensional stability --- dynamic thermodynamic --- acetic anhydride --- methyl methacrylate --- polymer-triticale boards --- thermoplastic polymers --- straw --- hydrophobicity --- mechanical properties --- oriented strand lumber (OSL) --- nanowollastonite --- mechanical and physical properties --- UF resin --- buckling --- WPC --- HDPE --- Southwell’s method --- finite element analysis --- Abaqus --- aquacultural --- structural analysis --- wood --- plastic --- composite --- n/a

Electrospun Nanofibers for Biomedical Applications

Authors: --- ---
ISBN: 9783039287741 / 9783039287758 Year: Pages: 308 DOI: 10.3390/books978-3-03928-775-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrospinning is a versatile and effective technique widely used to manufacture nanofibrous structures from a diversity of materials (synthetic, natural or inorganic). The electrospun nanofibrous meshes’ composition, morphology, porosity, and surface functionality support the development of advanced solutions for many biomedical applications. The Special Issue on “Electrospun Nanofibers for Biomedical Applications” assembles a set of original and highly-innovative contributions showcasing advanced devices and therapies based on or involving electrospun meshes. It comprises 13 original research papers covering topics that span from biomaterial scaffolds’ structure and functionalization, nanocomposites, antibacterial nanofibrous systems, wound dressings, monitoring devices, electrical stimulation, bone tissue engineering to first-in-human clinical trials. This publication also includes four review papers focused on drug delivery and tissue engineering applications.

Keywords

sol-gel --- electrospinning --- hydroxyapatite --- nanofiber --- antibacterial --- titanium --- antibacterial coatings --- electrospinning --- nanocomposite coatings --- TiO2 photocatalytic --- orthopedic infections --- electrospinning --- 3D printing --- nanofibers --- encapsulation --- protein diffusion --- in vivo tissue engineering --- immuno-isolation --- transplantation --- electrospinning --- sputtering --- drug delivery --- wound dressing --- biocompatibility --- tissue engineering --- biomimetic scaffolds --- gelatin --- electrospinning --- micromolding --- biomaterials --- poly(lactic acid) (PLLA) --- bioactive glass --- scaffolds --- electrospinning --- composite fibres --- bone regeneration --- poly(vinylidene fluoride) --- composite nanofiber --- piezoelectricity --- antioxidant activity --- well-aligned nanofibers --- P(VDF-TrFE) --- piezoelectric nanogenerator --- preosteoblasts electrospinning --- silicone modified polyurethane nanofibers --- physical properties --- cell attachment --- cell proliferation --- cytotoxicity --- biopolymers --- packaging --- pharmaceutical --- biomedical --- electrospinning --- alginate --- gelatin fibers --- ZnO particles --- antibacterial activity --- electrospinning --- nanofibers --- fabrication --- therapeutics --- biomedical applications --- antibody immobilization --- electrospun nanofibers --- TNF-? capture --- human articular chondrocytes --- rheumatoid arthritis --- nanofibers --- microfluidic chip --- electrospinning --- live assay --- hepatocellular carcinoma cells --- PLA95 --- biocompatibility --- guided tissue regeneration (GTR) --- electrospinning --- electrospun fiber mats --- mechanobiology --- glioblastoma --- biomaterials --- finite element modeling --- electrospun nanofibers --- cancer treatment --- drug release --- nanomedicine --- biocompatible polymers --- hyperthermia

Modeling and Experimental Characterization of Nanocomposite Materials

Author:
ISBN: 9783039286324 / 9783039286331 Year: Pages: 130 DOI: 10.3390/books978-3-03928-633-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This Special Issue gathers research from different branches of science and engineering disciplines working on experiments and modelling of nanocomposites into one volume. The Guest Editor welcomes papers dedicated to experimental, computational, and theoretical aspects dealing with many important state-of-the-art technologies and methodologies regarding the synthesis, fabrication, characterization, properties, design, and applications, and both finite element analysis and molecular dynamic simulations, of nanocomposite materials and structures. Full papers covering novel topics, extending the frontiers of the science and technology of nanoreinforced composites are encouraged. Reviews covering topics of major interest will be also considered.

Renewable Polymers: Processing and Chemical Modifications

Authors: ---
ISBN: 9783039287666 / 9783039287673 Year: Pages: 206 DOI: 10.3390/books978-3-03928-767-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The utilization of bio-resourced macromolecules for polymer applications has been the subject of increasing interest, mainly for sustainability and functionality reasons. This Special Issue of Processes brings together nine papers from leading scientists and researchers active in the area of “Sustainable and Renewable Polymers, Processing, and Chemical Modifications”. The collected papers include seven original research and two review articles related to renewable feedstock for polymer applications, processes for the fabrication of renewable polymer-based nanomaterials, the design and modification of renewable polymers, and applications of renewable polymers. The journal Processes will continue to nurture progress in this field through its position as an open access platform.

Advances in Electrochemical Energy Materials

Authors: ---
ISBN: 9783039286423 / 9783039286430 Year: Pages: 156 DOI: 10.3390/books978-3-03928-643-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Electrochemical energy storage is becoming essential for portable electronics, electrified transportation, integration of intermittent renewable energy into grids, and many other energy and power applications. The electrode materials and their structures, in addition to the electrolytes, play key roles in supporting a multitude of coupled physicochemical processes that include electronic, ionic, and diffusive transport in electrode and electrolyte phases, electrochemical reactions and material phase changes, as well as mechanical and thermal stresses, thus determining the storage energy density and power density, conversion efficiency, performance lifetime, and system cost and safety. Different material chemistries and multiscale porous structures are being investigated for high performance and low cost. The aim of this Special Issue is to report the recent advances in materials used in electrochemical energy storage that encompass supercapacitors and rechargeable batteries.

High Voltage Engineering and Applications

Author:
ISBN: 9783039287161 / 9783039287178 Year: Pages: 304 DOI: 10.3390/books978-3-03928-717-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

This book is a collection of recent publications from researchers all over the globe in the broad area of high-voltage engineering. The presented research papers cover both experimental and simulation studies, with a focus on topics related to insulation monitoring using state-of-the-art sensors and advanced machine learning algorithms. Special attention was given in the Special Issue to partial discharge monitoring as one of the most important techniques in insulation condition assessment. Moreover, this Special Issue contains several articles which focus on different modeling techniques that help researchers to better evaluate the condition of insulation systems. Different power system assets are addressed in this book, including transformers, outdoor insulators, underground cables, and gas-insulated substations.

Keywords

space/interface charge --- electrical field strength --- temperature --- oil-paper insulation --- simulation --- bipolar charge transport model --- earthing systems --- electrode’s geometry --- fast-impulses --- high-magnitude currents and impulse polarity --- grounding --- grounding electrodes --- high impulse conditions --- seasonal --- soil resistivity --- partial discharges (PD) --- partial discharge --- calibrator --- Tettex 9520 --- DDX 8003 --- DDX 9121b --- secondary arc --- short-circuit discharge --- numerical modeling --- plasma discharge --- post insulator --- non-uniform pollution between windward and leeward sides --- residual resistance formulation --- flashover dynamic model --- artificial flashover tests --- flashover characteristics --- feature selection --- insulation health index --- machine learning --- oil/paper insulation --- transformer asset management --- thermal effect --- cable --- XLPE --- laying modes --- Comsol Multiphysics --- thermal parameters --- cable ampacity --- partial discharge --- surface discharge --- UHF sensor --- FDTD simulation --- cavity discharge --- partial discharge --- denoising --- RF signal --- wavelet transform --- artificial neural network --- curve fitting --- saline mechanism --- shoreline --- wind speed --- outdoor insulators --- dry band arcing --- flashover --- tracking --- ageing --- hydrophobicity --- leakage current --- dry band arcing --- degradation --- polymeric insulation --- tracking test setup --- composite insulator --- dry band formation --- heat transfer model --- generalized finite difference time domain --- corona discharge --- electric field analysis --- ion flow field --- space charge density --- UFVM --- partial discharge --- optical-UHF integrated detection --- photoelectric fusion pattern --- GIL --- NSCT --- cable joint --- charge simulation method --- electrical tree --- random walk theory --- finite element analysis --- partial discharge modeling --- high-frequency --- fast-rise square wave voltages --- silicone gel --- wide bandgap power modules --- surface discharge --- flashover --- gas --- modelling --- pressure --- thermal properties

Novel Smart Textiles

Author:
ISBN: 9783039285709 / 9783039285716 Year: Pages: 230 DOI: 10.3390/books978-3-03928-571-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Arts in general
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

The sensing, adapting, responding, multifunctionality, low energy, small size and weight, ease of forming, and low-cost attributes of smart textiles and their multidisciplinary scope offer numerous end uses in medical, sports and fitness, military, fashion, automotive, aerospace, the built environment, and energy industries. The research and development on these new and high-value materials cross scientific boundaries, redefine material science design and engineering, and enhance quality of life and our environment. “Novel Smart Textiles” is a focused Special Issue that reports the latest research of this field and facilitates dissemination, networking, discussion, and debate.

Keywords

e-textile --- metamaterials --- transmission line --- wearable --- split ring resonator --- dye-sensitized solar cell (DSSC) --- polyacrylonitrile (PAN) --- nanofiber mat --- electrospinning --- PEDOT:PSS --- dye-sensitized solar cell --- half-textile --- spectral analysis --- parameter identification --- equivalent circuit --- black-box --- grey-box --- power spectral density --- optimization --- analytical model --- electromagnetic shielding effectiveness --- electric properties --- fabric --- woven textiles --- carbon nanomaterials --- smart fabrics --- in-line monitoring --- polymeric composites --- carbon nanotubes --- reduced graphene oxide --- textile electrode --- ECG --- motion sensor --- skin-electrode impedance --- electrically conductive textiles --- polymers --- smart textiles --- surface area evaluation --- microencapsulation --- biofunctional --- drug-delivery --- textile-based stretch sensors --- stitch structure --- wearable stretch sensor --- conductive thread --- conductivity --- metal flake --- coating --- e-textile --- encapsulation --- durability --- stiffness --- textile/polymer composite --- stretchable electronics --- smart textiles --- mechanical and electrical properties --- quasi-static and cyclic mechanical loading --- life-time expectancy --- smart textile --- thermal textile pixel --- thermal communication --- non-auditory and nonvisual communication --- thermal conductivity --- Peltier element --- SMART pattern-changing fabric --- pattern effect --- visual response --- visual brain --- event-related potential (ERP) --- psychotextiles --- art and design --- smart textiles --- textile sensors --- e-textiles --- visual brain --- thermal textile pixels --- stretchable electronics --- conductive textiles --- wearables --- stitch-based sensors --- biofunctional textiles --- ECG --- hybrid electrodes --- motion tracking --- carbon nanotextiles --- composites --- EMS textiles --- electrospun solar cells --- embroidered e-textiles --- targeted delivery --- psychotextiles --- energy harvesting --- multifunctional

Design and Development of Nanostructured Thin Films

Authors: --- ---
ISBN: 9783039287383 / 9783039287390 Year: Pages: 386 DOI: 10.3390/books978-3-03928-739-0 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General)
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

Due to their unique size-dependent physicochemical properties, nanostructured thin films are used in a wide range of applications from smart coating and drug delivery to electrocatalysis and highly-sensitive sensors. Depending on the targeted application and the deposition technique, these materials have been designed and developed by tuning their atomic-molecular 2D- and/or 3D-aggregation, thickness, crystallinity, and porosity, having effects on their optical, mechanical, catalytic, and conductive properties. Several open questions remain about the impact of nanomaterial production and use on environment and health. Many efforts are currently being made not only to prevent nanotechnologies and nanomaterials from contributing to environmental pollution but also to design nanomaterials to support, control, and protect the environment. This Special Issue aims to cover the recent advances in designing nanostructured films focusing on environmental issues related to their fabrication processes (e.g., low power and low cost technologies, the use of environmentally friendly solvents), their precursors (e.g., waste-recycled, bio-based, biodegradable, and natural materials), their applications (e.g., controlled release of chemicals, mimicking of natural processes, and clean energy conversion and storage), and their use in monitoring environment pollution (e.g., sensors optically- or electrically-sensitive to pollutants)

Keywords

InAlN --- nanospiral --- metamaterial --- sputtering --- chirality --- microparticle deposition --- self-assembly --- homogeneity --- monomer synthesis --- mask --- hazardous organic solvents --- photonic nanostructures --- self-assembly --- polymer nanoparticles --- biomimetic solvent sensors --- iridescence --- mesoporous --- Al2O3 --- MgO --- poly(dimethylacrylamide) --- hydrogel --- thin film --- spin coating --- SEM --- FIB --- Kr physisorption --- hydrogenated amorphous carbon films --- metallic nanoparticles --- hybrid deposition system --- nanoscratch --- nanocomposites --- aqueous dispersion --- carbon nanotube --- graphene oxide --- ink --- rod coating --- electrical conductivity --- optical transmittance --- mechanical flexibility --- silk sericin --- agarose --- lysozyme --- composite gel --- wound dressing --- nanofiber --- lamination --- water filtration --- CdTe --- self-catalysed --- wires --- Mg alloy --- LDH --- corrosion --- deposition --- coating --- ReB2/TaN multilayers --- modulation structure --- first-principles calculation --- interfacial model --- adsorption energy --- interfacial energy --- biomaterial --- biomedical --- nanofibers --- scaffolds --- reinforced --- hybrid material --- thermal analysis --- nanofibrous membranes --- light trapping --- silicon thin film --- photovoltaics --- polystyrene sphere assisted lithography --- nanostructured back reflectors --- Raman scattering --- quantum confinement --- electron–phonon coupling --- polar semiconductors --- zinc oxide --- metal-organic framework --- microscopy --- thin films --- powders --- electrodeposition --- platinum --- highly oriented pyrolytic graphite --- 2D growth --- barrier material --- nanocoating of SiOx --- polymeric matrix --- plasma deposition --- PVD --- PA-PVD --- PECVD --- permeation --- CERAMIS® --- SorpTest --- iron oxides --- FeO --- Fe3O4 --- ultrathin films --- epitaxial growth --- platinum --- ruthenium --- symmetry --- LEEM --- LEED --- XPEEM --- electrodeposition --- platinum --- highly oriented pyrolytic graphite --- 2D growth --- thin films --- TiO2NPs --- AuNPs --- photocatalysis --- mercury vapors adsorbing layer --- PAS device --- iron oxides --- ultrathin films --- silver --- epitaxial growth --- structural characterization --- STM --- LEED --- XPS --- DFT --- model system --- Pt thin deposits --- galvanic displacement --- UPD --- SLRR --- electrocatalysis --- nanostructured films --- birefringence --- nanocrystalline cellulose --- Mueller matrix --- vanadium dioxide --- post-treatment --- plasma irradiation --- luminous transmittance --- phase transition performance --- electrospinning deposition --- chemosensor --- nanocomposite conductive polymers --- polyhydroxibutyrate --- polystyrene --- H2TPP --- VOCs selectivity --- mesoporous graphene --- thin film --- nanostructure --- CaxCoO2 --- sputtering --- phase transformation --- Ge surface engineering --- La2O3 passivation layer --- atomic layer deposition --- electrical properties

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (13)


License

CC by-nc-nd (13)


Language

eng (13)


Year
From To Submit

2020 (13)